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 A computer program based on the discrete-element method has been developed to 

compute friction factors and Nusselt Numbers for fully-developed turbulent flows with 

randomly-rough surfaces.    Formulations of the discrete-element model for fully-

developed turbulent flows inside circular pipes and between infinite parallel plates with 

the necessary adaptations for randomly-rough surfaces are provided.  Utilizing the output 

of a three-dimensional profilometer, proper description of the randomly-rough surface is 

necessary for use within the discrete-element model.  Proper description of the randomly-

rough surface is achieved by the McClain (2002) method of characterization.   

 Predictions from the discrete-element model computer program are compared 

with the classical, laminar and turbulent, smooth-wall results.  In addition to the smooth-

wall evaluations, predictions are compared with experimental results for turbulent 

internal flows with deterministic surface roughness.  Predictions from the model 

demonstrated excellent agreement in all cases.  Friction factor and Nusselt Number 



www.manaraa.com

predictions for fully-developed flows over randomly-rough surfaces are also presented.  

With the friction factor and Nusselt Number data, velocity profiles for flows over 

randomly-rough, deterministically-rough and smooth surfaces are provided for 

comparison. 
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NOMENCLATURE 
 

Ac  Cross-sectional area 
 

Ap  Projected area 
 
As  Surface area 
 
CD  Drag coefficient 
 
cp  Specific heat 
 
Dh  Hydraulic diameter 
 
d  Local element diameter 

 
FD  Drag force 
 
ff  Fanning friction factor 
 
h  Half plate spacing 
 
h   Heat transfer coefficient 
 
K  Thermal conductivity 
 
KT  Turbulent thermal conductivity 
 
L  Streamwise element spacing 
 
L*  Eddy viscosity parameter 
 
L**  Eddy conductivity parameter 
 
l   Transverse element spacing 
 

m�   Mixing length 
 
Nu  Nusselt number 
 
Nud  Local element Nusselt number 
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P  Pressure 
 
Pr  Prandtl number 
 
PrT  Turbulent Prandtl number 
 
QD   Heat transfer rate 
 
qD   Heat flux 
 
R  Radius of circular pipe 
 
r  Radius 
 
Re  Reynolds number 
 
Red  Local element Reynolds number 
 
T  Temperature 
 
Tm  Mixing-cup temperature 
 
T0  Wall temperature 
 
Um  Mean velocity 
 
u  Local streamwise velocity 
 
x  Streamwise coordinate 
 
y  Coordinate normal to wall 
 
 
 
Greek 
 
α   Thermal diffusivity 
 
β   Openage factor 
 

xδ   x-length of control volume 
 

yδ   y-length of control volume 
 
ε   Elliptical eccentricity factor 
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θ   Nondimensional temperature 
 
µ   Dynamic viscosity 
 

Tµ   Turbulent eddy viscosity 
 
ρ   Density 
 
 
 
Superscripts 
 
.~   Indicates nondimensionalization = R/⋅ (circular pipe) or h/⋅  (infinite 

  parallel plates), except mUuu /~ =  and Nu/~ θθ = . 
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CHAPTER I 

INTRODUCTION 

Roughness effects are an important concern on many surfaces of engineering 

interest.  Examples include turbines, compressors, heat exchangers, ships, submarines, 

aircraft, re-entry vehicles, and piping networks.  In these applications, turbulent flows 

over rough surfaces result in appreciably larger skin friction and heat transfer as 

compared with corresponding turbulent flows over smooth surfaces.  Dependant on the 

particular application, the increase in skin friction and heat transfer due to the surface 

roughness can have a beneficial or detrimental effect.  Gas turbine performance is 

negatively affected by the presence of surface roughness.  The increased drag on the 

turbine blades, from the presence of surface roughness, reduces the overall efficiency of 

the gas turbine.  However, for internal cooling of electrical components, increased heat 

transfer from the presence of surface roughness is desirable.  Therefore, the ability to 

quantify the characteristics of such roughness is necessary.   

 
Background 
 
    Over the years, two methods have emerged for assessing the effects of surface 

roughness on drag and heat transfer.  The first, the equivalent sand-grain roughness 

model, was proposed by Schlichting (1936).  This entirely empirical model compares a 

rough surface of interest to data from Nikuradse (1933) for flow in pipes roughened by 

varying sizes of sand.  The rough surface of interest is then assigned an equivalent sand-
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grain roughness height corresponding to the sand-grain size used in Nikuradse’s 

experiment.   

 In the same paper that Schlichting introduced the equivalent sand-grain roughness 

concept, he discussed the significance of the roughness density on the flow resistance.  

He suggested that the flow resistance of a rough surface could be divided into two 

components:  1) that due to the sum of the drag from each individual roughness element 

protruding into the boundary layer and 2) that due to the viscous shear on the smooth part 

of the wall between the roughness elements.  Based on Schlicting’s proposal, Taylor 

(1983) derived and validated the discrete-element model for three-dimensional, ordered 

roughness elements on a flat plate.  Using the output from a three-dimensional 

profilometer, McClain (2002) presented and validated a method for determining the 

geometry input required in the discrete-element method for randomly-rough surfaces. 

 
Objective 

 The objective of this work is to develop a computer program for predicting the 

friction factor and heat transfer for fully-developed flows over randomly-rough surfaces 

utilizing the discrete-element model.  Initially, the discrete-element model is formulated 

for fully-developed flows in a circular pipe and between parallel plates.  The adaptations 

to the discrete-element for randomly-rough surface considerations are then presented.  

The randomly-rough surface adaptations presented were developed by McClain (2002).  

Finally, validation cases and comparisons of the results are presented.   
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CHAPTER II 

DISCRETE ELEMENT FORMULATION FOR FULLY-DEVELOPED FLOWS 

 The discrete-element model as derived by Taylor (1983) is the roughness model 

used herein.  In contrast to the entirely empirical equivalent sand-grain roughness model, 

the discrete-element model considers the physical characteristics of the roughness 

elements in the formulation of the differential equations.  The roughness effects are 

integrated into the solution by considering the flow blockage due to the roughness 

elements, the drag force exerted on the flow by the roughness elements, and the heat 

transfer between the flow and the roughness elements.  The differential equations, with 

roughness effects, are formulated by applying the basic statements of mass, momentum, 

and energy conservation to a differential control volume such as that shown in Figure 2.1.   

 
Circular Pipe Formulation 

 For the flow blockage, an openage factor, β , must be defined.  Let xβ  ( )yβ  be 

the fraction of the surface open to the flow that is perpendicular to the x-coordinate (y-

coordinate).  The drag force is a result of the roughness elements penetrating the control 

volume.  In terms of a local drag coefficient, the drag force is expressed as 

 
elementspDD NAuCF 2

2
1 ρ=  

(2.1)

where proper formulation of the discrete-element model requires roughness elements for 

which the element cross section can be defined at every height, y.  Initially,  
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( ) yyAq |D

( ) yyyAq δ+|D

( ) yyA |τ

( ) yyyA δτ +|

yδ

r

y

φ

l

( ) yyAq |D

( ) yyyAq δ+|D

( ) yyA |τ

( ) yyyA δτ +|

( ) xpTcm |D ( ) xxpTcm δ+|D

( ) xxPA | ( ) xxxPA δ+|

L

y

DF

QD

 

Figure 2.1  Circular Pipe Control Volume. 

the roughness elements will be taken to have circular cross-sections with a projected area 

of ( ) yydAp δ= .  The number of elements in the control volume is  

 ( )
lL

xRNelements
δπ2=  

(2.2)
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The difference in temperature between the surface of the roughness element 

penetrating the control volume and the fluid results in the local heat transfer rate, QC .  

Using a local Nusselt number, the local heat transfer rate is defined as 

 
( ) ( )TTNANu
yd

KQ elementssd −= 0
�

(2.3)

The temperature of the roughness element is taken to be equal to the wall temperature, 

0T .  The local surface area is ( ) yydAs δπ= . 

 In this formulation, the flow is considered to be fully developed, incompressible, 

and to have constant fluid properties.  Considering the aforementioned principles, Taylor 

and Hodge (1993) presented the steady, fully-developed, Reynolds averaged, two-

dimensional turbulent momentum and energy equations with uniform roughness as 

 ( )
rlL

RyduC
dx
dP

y
ur

dy
d

r Dx
T

y
2

2
110 ρβ

µ
µβµ −−








∂
∂






 +=  
(2.4)

and 

 
( )TT

lL
RKNu

y
T

K
Kr

y
K

x
Turc d

T
yxp −−








∂
∂






 +

∂
∂−

∂
∂= 010 πββρ  

(2.5)

The boundary conditions for equations (2.4) and (2.5) are  

 y = 0 : u = 0, T = T0 

y = R : 0=
dy
du , 0=

∂
∂

y
T  

(2.6)

The first boundary condition is applied at the pipe wall or y = 0.  At this point, the “no-

slip” condition is applied and the temperature of the fluid directly adjacent to the surface 

is taken to be equal to the surface temperature.  At the centerline of the pipe, the second 

boundary condition represents the symmetrical characteristic of the control volume.   
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Hydrodynamic fully-developed flows are characterized by the relationship, 

.0/ =∂∂ xu   However, the existence of the thermally-developed flow is not as easily 

visualized.  Use of the condition 0/ =∂∂ xT  leads only to the adiabatic condition.  To 

properly portray a generalized temperature profile that is independent of the tube length, 

the variable, Tm, must be defined.  The mass-averaged fluid temperature or mixing-cup 

temperature, Tm, characterizes the average thermal energy state of the fluid.  This 

temperature is defined as 

 
∫= c

c
m uTdA

UA
T 1  

(2.7)

While considering the mass-averaged fluid temperature in the definition of the heat flux 

at the surface under consideration Kays and Crawford (1993) showed that the heat 

transfer coefficient, h , for thermally-developed flow is not a function of tube length. 

 The nondimensional temperature used to characterize thermally-developed flows 

is defined as 

 ( ) ( )
( ) ( )xTxT

rxTxT

m−
−

=
0

0 ,θ  
(2.8)

For thermally-developed flow, θ  is not a function of the streamwise coordinate x; that is, 

0/ =∂∂ xθ .  The relationships h = constant and 0/ =∂∂ xθ , used to define thermally-

developed flow, have been held as true for smooth wall flows.  Taylor and Hodge (1992) 

demonstrated that these relationships held in roughness dominated flows as well.   

 Two surface conditions commonly specified for the energy equation are for 

constant wall heat flux and for constant wall temperature.  Employing these boundary 

conditions and the thermally-developed flow relationships, greatly simplify the energy 

equations.  For pipe flow, the Nusselt number is defined as 
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( ) K

hR
TTK

qRNu
m

22

0

0 =
−

=
D

 
(2.9)

For constant wall heat flux and thermally-developed flow, the following relationships can 

be established 

 ( )m
m

m TTNu
RUx

T
x
T

x
T −=

∂
∂

=
∂
∂

=
∂
∂

02
0 α (2.10)

Substituting into equation (2.5) and using the nondimensional variables mUuu /~ = , 

Ryy /~ = , yRrr ~1/~ −== , Rll /~ = , and RLL /~ = and rearranging gives the differential 

equation for constant wall heat flux. 

 

Ll
Nu

ryd
d

K
Kr

yd
d

r
Nuu d

T
yx ~~~

1
~1~

~~
1~ πθθββ +













 +−=

(2.11)

For constant T0 and thermally-developed flow, the following relationship can be 

established 

 ( )m
m

m TTNu
RUx

T
x
T −=

∂
∂

=
∂
∂

02

αθθ
(2.12)

The energy equation for constant wall temperature then reduces to  

 

Ll
Nu

ryd
d

K
Kr

yd
d

r
Nuu d

T
yx ~~~

1
~1~

~~
1~ πθθβθβ +













 +−=

(2.13)

The boundary conditions for both equation (2.11) and equation (2.13) are 

 0~ =y : 0=θ  

1~ =y : 0~ =
yd

dθ  

(2.14)
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Infinite Parallel Plates Formulation 

The above formulation will now be adapted to consider flows between infinite 

parallel plates.  Figure 2.2 displays the modified differential control volume for the 

application of the basic conservation statements.  Correctly identifying the hydraulic 

diameter, Dh is essential in considering flows between infinite parallel plates.  The 

hydraulic diameter is defined as 

 
P
AD c

h
4

=  
(2.15)

 

( ) yyAq |D

( ) yyyAq δ+|D

( ) yyA |τ

( ) yyyA δτ +|

( ) xpTcm |D
( ) xxpTcm δ+|D

( ) xxPA | ( ) xxxPA δ+|

L

y DFQD

l

y

( ) yyA |τ ( ) yyAq |D

( ) yyyA δτ +| ( ) yyyAq δ+|D

z

h2

 

Figure 2.2  Infinite Parallel Plates Control Volume. 



www.manaraa.com

 

 

9

 

For flows between infinite parallel plates, the hydraulic diameter becomes twice the plate 

spacing or 4h.   

  For infinite parallel plates, the Reynolds number and Nusselt number based on 

hydraulic diameter become  

 
µ

ρ
µ

ρ hUDU mhm
Dh

4
Re ==  

(2.16)

and 

 
K

hh
K

hDNu h 4==  
(2.17)

respectively.   

 The steady, Reynolds averaged, two-dimensional turbulent momentum and 

energy equations with uniform roughness for fully-developed, incompressible flows 

between infinite parallel plates with constant fluid properties are 

 ( )
lL

yduC
dx
dP

y
u

dy
d

Dx
T

y
2

2
110 ρβ

µ
µβµ −−








∂
∂






 +=
(2.18)

and 

 
( )TT

lL
KNu

y
T

K
K

y
K

x
Tuc d

T
yxp −−








∂
∂






 +

∂
∂−

∂
∂= 010 πββρ  

(2.19)

The boundary conditions for equations (2.18) and (2.19) are  

 y = 0 : u = 0, T = T0 

y = h : 0=
dy
du , 0=

∂
∂

y
T  

(2.20)

 The constant wall heat flux and constant wall temperature boundary conditions 

previously considered in circular pipe flows will be implemented in the infinite parallel 

plate formulation as well.  Using these common boundary conditions and the thermally-
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developed flow relationships in conjunction with the Nusselt number allows for similar 

simplifications of the energy equations.  After applying the constant wall heat flux 

boundary condition and using the new nondimensional variables hyy /~ = , hll /~ = , and 

hLL /~ = , the energy equation reduces to  

 

Ll
Nu

yd
d

K
K

yd
dNuu d

T
yx ~~4~1~4~ πθθββ +













 +−=

(2.21)

The length variables for the infinite parallel plate formulation are nondimensionalized by 

h, half the plate spacing.  The energy equation with the constant wall temperature 

boundary condition reduces to  

 

Ll
Nu

yd
d

K
K

yd
dNuu d

T
yx ~~4~1~4~ πθθβθβ +













 +−=

(2.22)

The boundary conditions for both equation (2.21) and equation (2.22) are 

 0~ =y : 0=θ  

1~ =y : 0~ =
yd

dθ  

(2.23)

 

Solution Procedure 

Due to the assumption of constant property, incompressible flow, the momentum 

and energy equations can be solved separately.  However, the velocity profile from the 

momentum equation solution is required in the solution of the energy equation.  The 

following explanation of the solution method includes equations for both the circular pipe 

and infinite parallel plate formulations.  When the equations differ between the two 

formulations, an a or b in the equation number will represent the appropriate equation for 

flows in a circular pipe or between infinite parallel plates, respectively. 
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Initially, the pressure drop is defined in terms of the Fanning friction factor, ff. 

 

R
Uf

dx
dP m

f

2

ρ−=  
(2.24a)

 

h
Uf

dx
dP m

f 2

2

ρ−=  
(2.24b)

The eddy viscosity parameter, L*, is defined such that 

 





 +=
µ
µβ T

yrL 1~*  
(2.25a)

 




 +=

µ
µβ T

yL 1*  
(2.25b)

Substituting into the momentum equation, reducing, and using the prime notation to 

represent differentiation with respect to y~  gives 

 
( ) 0~1Re

*2
1~~

~~
~

Re
*4

1~
*
*~ =−+





−′

′
+′′ yf

L
uuC

Ll
d

L
u

L
Lu fDxDD β  

(2.26a)

 
0Re

*8
1~~

~~
~

Re
*8

1~
*
*~ =+





−′

′
+′′ fDxDD f

L
uuC

Ll
d

L
u

L
Lu

hh
β  

(2.26b)

The boundary conditions are 

 0~ =y : 0=u  

1~ =y : 0~ =′u  

(2.27)

 Scaggs et al.  (1988) presented the following equation for determination of the 

blockage factors 

 

( )yLl
d

xy ~1~~4

~
1

2

−
−== πββ  

(2.28a)
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Ll
d

xy ~~4

~
1

2πββ −==  
(2.28b)

The element diameter, d, is nondimensionalized by R for the circular pipe formulation 

and h for the infinite parallel plate formulation.  The nondimensional element diameter, 

d~ , is then determined as a function of the element base diameter and height. 

A two-band algebraic model, taken from Kays and Crawford (1993), is used for 

the eddy viscosity.  A Prandtl mixing-length model with van Driest damping is used in 

the viscous sublayer near the wall 
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where the nondimensional mixing length, m�
~ , is 
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In the turbulent core of the flow, the relationship becomes 
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(2.31b)

The limit between the domains of equations (2.28) and (2.30) is taken to be the point 

where they give the same value for the eddy viscosity relationship, µµ /T . 

 The functional form of the local element drag coefficient comes from Taylor et al. 

(1984). This equation is expressed in terms of the local element Reynolds number, Red, 

as 

 125.0

1000
Re −






= d

DC ;     6.0}DC  
(2.32)

 6.0=DC ;     otherwise  

where 

 
udDd
~~Re

2
1Re =  

(2.33a)

 
ud

hDd
~~Re

4
1Re =  

(2.33b)

Using equation (2.32), Taylor and Hodge (1993) displayed good agreement of skin 

friction predictions with experimental results over a wide range of uniform surface 

roughness shapes and distributions.  

Completion of the solution requires the velocity profile to satisfy the global 

conservation of mass 

 ( )∫ −==
1

0
~~1~21~ ydyuu xm β  (2.34a)

 ∫==
1

0
~~1~ yduu xm β  (2.34b)
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 The following procedure is presented by Taylor and Hodge (1993).  Given the 

Reynolds number and the relative roughness parameters ( 0
~d , k~ , l~ , L~ ), a solution for ff 

and ( )yu~  can be reached by:  

1.) Assuming a value of ff and compute ( )yu~  using a finite difference 
procedure. 

 
2.) Finding values of ff such that the corresponding values of mu~  bound 1. 
 
3.) Using the method of false position to solve for ff such that 1~ =mu . 

 
The eddy viscosity relationship, µµ /T , and the velocity profile, ( )yu~ , 

determined in the momentum equation are used in the solution of the energy equation.  

For the energy equation, the eddy conductivity parameter, L**, is defined as 
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(2.35b)

The temperature profile, θ~ , is defined such that 

 
Nu
θθ =~  

(2.36)

Substituting into the energy equation with the constant wall heat flux boundary condition 

gives 
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(2.37a)
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with the boundary conditions 
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 0~ =y : 0~ =θ  

1~ =y : 0~ =′θ  

(2.38)

 From Kays and Crawford (1993), the turbulent Prandtl number is taken to be 

constant 

 PrT = 0.9     Pr < 1 (2.39)

 PrT = 1.0     Pr > 1  

Following Hosni et al. (1989) and Taylor et al. (1984), the local element Nusselt number 

is defined as a function of the local element Reynolds number as 

 4.049.0 PrRe7.1 ddNu = ;     500,2Re �d  (2.40)

 4.06.0 PrRe963.0 ddNu = ;     000,200Re500,2 �d≤   

 4.084.0 PrRe06.0 ddNu = ;     000,200Re ≥d   

In addition to the local roughness element drag coefficient relationship, the local 

roughness Nusselt number relationship is a roughness model calibration developed for 

boundary-layer flows.  Both are used unchanged within this work for fully-developed 

flows. 

A solution for the temperature profile, θ~ , can be achieved by applying the same 

finite difference procedure used in the momentum equation solution to equation (2.37).  

Determination of the Nusselt number requires the mean value of the nondimensional 

temperature to be equal to 1. 

 ( )∫ −===
1

0
~~~1~21~ ydyuNu xmm θβθθ (2.41a)

 ∫===
1

0
~~~1~ yduNu xmm θβθθ  (2.41b)
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 The solution for the energy equation with the constant wall temperature boundary 

condition is not as easily achieved.  An iterative procedure is necessary.  Utilizing the 

previously defined model for the eddy viscosity parameter, changes the energy equation 

with the constant wall temperature boundary condition to  
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with the boundary conditions 

 0~ =y : 0~ ==θθ  

1~ =y : 0~ =′=′ θθ  

(2.43)

An iterative procedure is necessary because the equation now contains θ .  An initial 

profile is assumed for 1*θθ = .  The energy equation is then modified to be 
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(2.44b)

and a solution for 1
~θ  is achieved by using the same finite difference method used in the 

solutions of the momentum equation and the energy equation with the constant wall heat 

flux boundary condition.  The Nusselt number is then computed as a function of mθ  

 

m

Nu
,1

1 ~
1

θ
=  

(2.45)

The process is repeated until a constant Nusselt number value is obtained using 

11
~* −−= iii Nu θθ .



www.manaraa.com

- 3 - 

 

 
 
 
 

CHAPTER III 
 

RANDOM ROUGHNESS ADAPTATIONS TO THE DISCRETE-ELEMENT MODEL 

 
 The discrete-element model has been validated for turbulent boundary layers over 

surfaces roughened with ordered, uniform elements (Hosni et al., 1989, 1991).  In 

addition, McClain (2002) demonstrated excellent agreement between discrete-element 

method predictions and experimental results for turbulent boundary-layer flow over 

randomly-rough surfaces.  Taylor and Hodge (1993) validated the method used within 

this work for predicting fully-developed Nusselt numbers and friction factors in pipes 

with ordered, uniform roughness elements.  The Taylor and Hodge (1993) method is 

adapted to consider randomly-roughened surfaces using McClain’s (2002) model. 

Unlike the ordered surfaces used to validate the discrete-element model, 

randomly-rough surfaces are significantly different.  Randomly-rough surfaces are 

characterized by roughness elements varying in shape, distribution, and height.  The 

hemisphere or conical roughness elements previously considered have a circular cross-

section at every elevation.  For a randomly-rough surface, this is no longer true.  

Randomly-rough surfaces are also differentiated by the lack of an obvious reference 

surface on which to apply the “no-slip” condition for solving the differential equations.  

In contrast, the “no-slip” condition for ordered roughness elements is apparent because 

the elements are placed on a flat surface.  These characteristics of randomly-rough 
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surfaces are evident in Figure 3.1, a three-dimensional profilometer trace of a randomly-

rough surface. 

 

Figure 3.1  Three-dimensional Profilometer Trace of a Randomly-rough Surface (van Rij 
                   et al. 2002) 
 

The discrete-element model requires blockage factors and element diameters for 

each roughness element at any y-location in the solution process.  Use of a three-

dimensional profilometer allows for the direct measurement of the surface features of a 

randomly-rough surface.  From the three-dimensional profilometer characterization, the 

blockage factors and element diameters can be acquired.  The differential equations 

presented in the previous chapter for ordered, uniform roughness elements are modified, 

according to the McClain (2002) model, to consider the actual surface traits. 

 When evaluating a deterministic surface with the discrete-element model, the 

reference surface is obvious.  However, a randomly-rough surface does not present such 
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an easily distinguishable location.  McClain (2002) uses the “melt down” surface as his 

reference surface.  The “melt down” surface is described as the resulting surface if all 

individual roughness elements were melted and then solidified as a single volume with a 

constant height.  Taylor (1983) demonstrated that the discrete-element predictions for 

closely-packed hemispheres agreed best when the “melt down” height was used as the 

reference surface. 

 Figure 3.2 shows the roughness elements for a randomly-rough surface at an 

elevation of 60% of the minimum valley to the maximum surface height.  For this 

particular surface, the flow is from top to bottom.  The areas blocked by flow are shown 

in black, while the white area represents the area open to flow.  Examination of Figure 

3.2 demonstrates that random roughness elements are not in general circular.  The fact 

that the roughness elements appear elongated in the direction of the flow is also noted.   

Figure 3.3 examines the similarities between a random roughness element and an 

elliptical roughness element elongated in the direction of the flow.  
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Figure 3.2  Randomly-rough Surface Blockage at 60% Elevation (McClain 2002) 

 

Figure 3.3  Example Roughness Element Representation:  (a) Actual Randomly-rough 
                  Element, (b) Circular Roughness Element with the Same Transverse Width,  
                  (c) Elliptical Element with the Same Transverse Width and Eccentricity   
                  (McClain 2002) 
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 The elliptical-like characteristics of the roughness elements led McClain (2002) to 

incorporate an eccentricity factor in the discrete-element model.  An ellipsoidal blockage 

element elongated in the direction of the flow is displayed in Figure 3.4.  The eccentricity 

factor, ε , is the ratio of the maximum width of the roughness element perpendicular to 

the flow to the maximum length of the roughness element parallel to the flow.   

 
b
a

b
a ==

2
2ε  

(3.1)

The maximum width of the roughness element and the eccentricity factor are used to 

calculate the local drag and heat transfer for use in the discrete-element model. 

 

Figure 3.4  An Elliptical Roughness Element (McClain 2002) 
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McClain (2002) implements an ellipsoidal-blockage-element drag function due to 

the differences in the circular and ellipsoidal blockage elements.  The circular-blockage-

element drag function, equation (2.32), is modified to represent the differing drag 

characteristics.  The ellipsoidal drag function is presented in equation (3.2). 

 
73456.0

125.0

1000
Re ε

−






= d

DC ; 000,60Re <d  and ε < 4.46 
(3.2)

 73456.06.0 ε=DC ; 000,60Re >d  and ε < 4.46  

For eccentricities greater than 4.46, the drag coefficients are described by the following 

equation. 

 125.0

1000
Re

0.3
−






= d

DC ; 000,60Re <d  and ε > 4.46 
(3.3)

 8.1=DC ; 000,60Re >d  and ε > 4.46  

As the eccentricity increases, equation (3.3) captures the behavior of a flat plate 

perpendicular to the flow. 

 In addition to the differing drag characteristics, the McClain (2002) elliptical-

discrete-element model also considers the increased surface area for element heat transfer 

for the elliptical elements, as compared to the circular element.  An elliptical element area 

correction factor, εK , is defined as 
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The elliptical element area correction factor is derived directly from the approximation of 

the perimeter of an ellipse.  The additional surface area consideration increases the 

accuracy of the heat transfer information. 
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 The steady, fully-developed, Reynolds averaged, two-dimensional turbulent 

momentum equations with random roughness for flow in a circular pipe or between 

infinite parallel plates are represented by the following differential equations. 
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The steady, fully developed, Reynolds averaged, two-dimensional turbulent energy 

equations with random roughness are 
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The spacing parameters, l  and L, are the streamwise and transverse dimensions of the 

three-dimensional profilometer trace.  The number of roughness elements at each y-

location is denoted by Nr.  The boundary conditions for equations (3.5) and (3.6) are 

 y = ymdh : u = 0, T = T0 

y = R : 0=
dy
du , 0=

∂
∂

y
T  

(3.7a)

 y = ymdh : u = 0, T = T0 

y = h : 0=
dy
du , 0=

∂
∂

y
T  

(3.7b)

where ymdh is the “melt down” height.   

 In reality, random roughness elements are neither circular nor elliptical.  

However, reviewing Figure 3.3 visually demonstrates the similarities between a random 
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element and an elliptical element in comparison with a random element and a circular 

element.  Using elliptical characteristics in the discrete-element model, McClain (2002) 

drastically improved the predictions when considering randomly-rough surfaces.  

 Successful predictions using the discrete-element model for randomly-rough 

surfaces requires characterization of the surface.  The McClain (2002) technique for 

randomly-rough surface characterization is used.  Using the output from a three-

dimensional profilometer, the randomly-rough surface is characterized by evaluating the 

blockage fraction and the diameters and eccentricities of each roughness element at 

twenty-one equally-spaced height levels.  The first height level is taken at the “melt 

height.” 

From the randomly-rough surface evaluation, a text file is created for use within 

the computer program.  The text file is formatted in the following way.  First, the number 

of elements present at the first height level is presented followed by the blockage fraction 

at that same height level.  After the blockage fraction, the diameter for each roughness 

element at the first height level is given.  Finally, the eccentricity for each roughness 

element at the first height level follows.  This arrangement is continued for each of the 

twenty-one height levels used in the evaluation process.  A properly formatted text file is 

provided in Appendix A for reference. 

As previously discussed, the “melt height” is used as the reference surface when 

evaluating a randomly-rough surface.  Using the “melt height” when considering flows 

inside circular pipes presents a new problem.  Figure 3.5 illustrates how the “melt height” 

affects the diameter of a circular pipe.  The Reynolds number for flows inside circular 

pipes is based on the original diameter.    However, when using the discrete-element for 
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predictive purposes the new “melt” diameter is used.  In McClain’s (2002) boundary-

layer research this was not a consideration.  The Reynolds number in a boundary-layer 

flow is based on the length of the plate, which is unaffected by the “melt height.”  To 

account for the Reynolds number incontinuity, the following relationship is established 

with the assumption that the mass flow rates are equal in the original and “melt” cases. 

 






=

melt

original
originalmelt D

D
ReRe  

(3.8)

Using the ratio of the velocities between the original and “melt” cases, the Reynolds 

number relationship becomes strictly a function of the diameters.  For flows between 

infinite parallel plates, the Reynolds number is not affected. 

originalD

meltD

 

Figure 3.5  Circular Pipe with Random Roughness 
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CHAPTER IV 
 

RESULTS AND DISCUSSION 
 
 

 This chapter presents friction factor and Nusselt number predictions from the 

discrete-element model computer program.  Predictions are compared with classical, 

laminar and turbulent, smooth-wall results for flows within circular pipes and between 

infinite parallel plates.  In addition to smooth-wall results, discrete-element model 

predictions are compared with experimental results for turbulent internal flows with 

deterministic surface roughness.  Finally, predictions are presented for randomly-

roughened surfaces inside circular pipes and between infinite parallel plates. 

 
Smooth Wall 

 Initially, the discrete-element model computer program was validated by 

comparison with the classic results for laminar and turbulent flows in circular pipes and 

between infinite parallel plates with smooth walls.  Smooth-wall friction factor and 

Nusselt number predictions are made by specifying vanishingly-small roughness.  

Laminar flow is specified for cases where Re < 2000.  Tables 4.1 and 4.2 compare the 

discrete-element model computer program predictions and the classic solutions (for 

example, Bejan, 1995) for laminar flows in smooth circular pipes and between smooth 

infinite parallel plates, respectively.  The agreement for both of the friction factor 

solutions is excellent.  The Nusselt number predictions are within 0.2% of the classic 

solutions.   
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Table 4.1  Laminar Flow Comparison in a Smooth Circular Pipe 

 Discrete-Element Model Predictions Classic Solutions 
ReD ff NuH NuT ff NuH NuT 
1000 0.016 4.364 3.65 0.016 4.364 3.66 
2000 0.008 4.364 3.65 0.008 4.364 3.66 

 

Table 4.2  Laminar Flow Comparison Between Smooth Infinite Parallel Plates   

 Discrete-Element Model Predictions Classic Solutions 
ReDh ff NuH NuT ff NuH NuT 
1000 0.024 8.238 7.55 0.024 8.235 7.54 
2000 0.012 8.238 7.55 0.012 8.235 7.54 

 

 Figure 4.1 shows the smooth-wall turbulent friction factor predictions as 

compared with the following empirical relation reported by Bejan (1995) for high 

Reynolds numbers in smooth tubes. 

 2.0Re046.0 −=
hDff  (4.1)

Equation (4.1) holds for Reynolds numbers between 2 x 104 and 106.  The Nusselt 

number predictions are compared in Figure 4.2 with results from the Dittus-Boelter 

correlation.  The Nusselt number predictions are a result of using a Prandtl number of 0.9 

and the constant heat flux boundary condition.  In the friction factor and Nusselt number 

comparisons, the results for flows inside circular pipes are followed by the results for 

flows between infinite parallel plates.  For flows between parallel plates, the empirical 

correlations are based on the hydraulic diameter.  In each figure, the empirical correlation 

is characterized by the solid line and the prediction is represented by the dashed line. 
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(a)  Circular Pipe 

1 .104 1 .105 1 .106
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ffPlatePred i

ReDi  

(b)  Infinite Parallel Plates 

Figure 4.1  Comparison of Empirical Correlation and Predicted Friction Factors for  
                  Flows in a (a) Circular Pipe and (b) between Infinite Parallel Plates 
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(a)  Circular Pipe 

1 .10 4 1 .10 5 1 .10 6
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(b)  Infinite Parallel Plates 

Figure 4.2  Comparison of Empirical Correlation and Predicted Nusselt Numbers for  
                  Flows in a (a) Circular Pipe and (b) between Infinite Parallel Plates 
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 The results exhibited by each figure display excellent agreement.  Since the 

turbulence model used within the computer program was derived from smooth-wall 

turbulent flow data, these results were expected. 

 

Deterministic Roughness 

 Scaggs (1987) experimentally measured friction factors for turbulent flow in pipes 

roughened with hemispheres and cones.  He successfully measured the friction factor in 

pipes with a range of different roughness sizes and spacings.  Table 4.3 describes four of 

the nine roughness patterns he used.   

Table 4.3  Roughness Patterns of Scaggs (1987) 

Surface Pipe Diameter 
[mm] 

Element Base 
Diameter 

[mm] 

Element 
Spacing 
[mm] 

Element Height 
[mm] 

Large 
Hemispheres 

    

A-1 51.46 2.55 5.10 1.27 
A-2 51.56 2.55 10.20 1.27 

Small 
Hemispheres 

    

B-1 51.88 1.25 2.50 0.65 
B-2 51.54 1.25 5.05 0.60 

 

 Figures 4.3 through 4.6 compare Scaggs (1987) experimentally-measured friction 

factors with the predicted values.  In the figures, Scaggs experimental data points are 

represented by symbols and the predictions are represented by a solid line.  There are no 

heat transfer comparisons because Scaggs did not present any heat transfer data.  In all of 

the figures, the agreement is excellent.  Conformity between the experimental and 

predicted values is expected.  Taylor et al. (1984) calibrated the roughness model used 
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within this work using the cone and spherical segment data of Schlichting (1936).  

Scaggs et al. (1988), in turn, demonstrated excellent agreement with Taylor’s results.   

 

1 .104 1 .105 1 .106
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ffcomp

ReDexp ReDcomp,  

Figure 4.3  Comparison of Scaggs (1987) Experimental Results for Surface A-1 with  
                  Predicted Values 
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Figure 4.4  Comparison of Scaggs (1987) Experimental Results for Surface A-2 with  
                  Predicted Values 
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Figure 4.5  Comparison of Scaggs (1987) Experimental Results for Surface B-1 with  
                  Predicted Values 
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Figure 4.6 Comparison of Scaggs (1987) Experimental Results for Surface B-2 with  
                 Predicted Values 
 

Random Roughness 

 To ensure the McClain (2002) method for characterizing a randomly-rough 

surface was properly implemented in the discrete-element model, a data set from Scaggs 

(1987) was used for comparison.  Predictions for Surface A-1 were generated from the 

discrete-element model for deterministic roughness.  In Figures 4.7 and 4.8, these 

deterministic results are compared with predictions from the discrete-element model after 

characterizing the same deterministic surface with the McClain method for randomly-

rough surfaces.  The deterministic method considers only the effect of a single roughness 
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element.  However, when characterizing the surface with the McClain method, the 

spacing was expanded to include the average effect of four roughness elements.  Using 

the McClain method of characterization forces the elemental spacing parameters to 

become the size of the surface considered since multiple roughness elements are 

considered.  This is necessary because the transverse and parallel spacings are no longer 

constant with randomly-rough surfaces.  The average effects of the roughness elements 

are considered when utilizing the McClain method of characterization. 

In addition to friction factor data, Nusselt numbers are included since predictions 

are being compared.  In each figure, the deterministic predictions are represented by 

symbols.  The predictions from the McClain characterization method and the 

deterministic method are identical.  These results demonstrate that the McClain method 

successfully replicates multiple deterministic roughness elements on a flat surface.  

1 .104 1 .105 1 .106
0.01

0.1

ffDeterm

ffRand

Re  

Figure 4.7  Comparison of Friction Factor Predictions Using the McClain  
                  Characterization Method and the Deterministic Method 
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Figure 4.8  Comparison of Nusselt Number Predictions Using the McClain  
                  Characterization Method and the Deterministic Method 
 

   To guarantee that the “melt height” was correctly implemented in the discrete-

element, the following comparison was used.  Predictions were created for Surface A-1 

with a “melt height” of 0.1669 mm.  These predictions were then compared with 

predictions for Surface A-1 with a pipe diameter reduced by twice the “melt height.”  

Since the flow effects below the “melt height” are considered negligible, the predictions 

should be identical.  Comparisons between the two predictions are presented in Figures 

4.9 and 4.10.  The results are identical. 



www.manaraa.com

 

 

35

 

1 .104 1 .105 1 .106
0.01

0.1

ffDMinus2Melt

ffMelt

Re  

Figure 4.9  Comparison of Friction Factor Predictions for “Melt Height” Validation 
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Figure 4.10  Comparison of Nusselt Number Predictions for “Melt Height” Validation 

 A noticeable change in slope is displayed at a Reynolds number of approximately 

1.25 x 105 in Figure 4.10.  The slope change is a result of the functional form of equation 

(2.40), the local roughness Nusselt number relationship.  At the specified point, the local 

Reynolds moves from one function range to the next in a piecewise-continuous 

definition. 
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 In Figures 4.11 through 4.14 the predictions are presented for the “deposit” 

surface presented in McClain (2002).  The surface was treated as if it were the inside of a 

circular pipe or the interior of infinite parallel plates.  The conditions used to achieve the 

predictions are displayed in Table 4.4.  All of the conditions were arbitrarily chosen.  The 

pipe diameter and Prandtl number were chosen to be consistent with that of Scaggs 

(1987).  The Reynolds number range for the circular pipe predictions presented in Figures 

4.11 and 4.12 are modified according to equation (3.8).  This modification is necessary to 

account for the Reynolds number modification when using the “melt height” for internal 

flows.  This modification is addressed in Chapter 3.   

Table 4.4  Conditions for the “Deposit” Surface [McClain (2002)] Predictions 

Diameter or 
Plate Spacing 

[mm] 

Transverse 
Length 
[mm] 

Parallel Length 
[mm] 

“Melt Height” 
[mm] 

Prandtl Number 
 

51.46 50.0 50.0 1.5 6.2 
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Figure 4.11  Friction Factor Predictions for the “Deposit” Surface [McClain (2002)] in a  
                    Circular Pipe 
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Figure 4.12  Nusselt Number Predictions for the “Deposit” Surface [McClain (2002)] in a  
                    Circular Pipe 
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Figure 4.13  Friction Factor Predictions for the “Deposit” Surface [McClain (2002)] for  
                    Infinite Parallel Plates 
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Figure 4.14  Nusselt Number Predictions for the “Deposit” Surface [McClain (2002)] for  
                    Infinite Parallel Plates 
 

 No experimental results are provided for comparison because current literature 

does not provide any experimental results for internal flows over randomly-rough 

surfaces with the roughness geometry characterized by three-dimensional profilometer 

traces.  Velocity profiles for fully-developed, internal flows over randomly-rough, 

deterministically rough, and smooth surfaces are shown in Figure 4.15.  The vertical axis 

of the figure is the nondimensional radius, r / R.  The nondimensional velocity along the 

horizontal axis is nondimensionalized with respect to the centerline velocity.  The solid 

line represents the velocity profile over the randomly-rough surface.  The velocity profile 

over the deterministically rough surface is characterized by the dash-dot line.  Finally, the 

dashed line represents the flow through the smooth pipe.  A magnified view, close to the 

pipe wall, is provided in Figure 4.16 for the same three velocity profiles. 
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Figure 4.15  Internal Flow Velocity Profiles over Randomly-rough, Deterministically-  
                    rough, and Smooth Surfaces 
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Figure 4.16  Magnified View of Internal Flow Velocity Profiles over Randomly-rough,  
                    Deterministically-rough, and Smooth Surfaces 
 
 

The velocity profile over the randomly-rough surface has the greatest slope of the 

three profiles.  The deterministically rough profile falls between the randomly-rough 

profile and the smooth wall profile.  All of these results are expected.  The randomly-

rough surface is characterized by a large number of densely-packed roughness elements.  

This characteristic results in a much larger blockage factor as compared to those of the 

deterministic and smooth surfaces.  In turn, the increased blockage forces the boundary 

layer, over the randomly-rough surface, further away from the pipe wall.   
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Figure 4.17  Internal Flow Velocity Profile over a Randomly-Rough Surface, Close to the  
                    Wall 
 

 The effects of the increased blockage of the randomly-rough surface are also 

evident in Figure 4.17.  Figure 4.17 displays the velocity profile over the randomly-rough 

surface.  The bottom 10% of the velocity profile is shown to display how the densely 

packed roughness elements of the randomly-rough surface affect the flow.  At the “melt 

height” there is no significant flow.  The flow reaches 10% of the centerline velocity at 

1% of the radius.  In comparison, at the same radial point the velocity of the 

deterministically-rough flow has reached almost 27% of the centerline velocity.  The 

larger slope of the randomly-rough velocity profile is a result of the increased blockage 

close to the wall. 
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CHAPTER V 
 

CONCLUSIONS 

A discrete-element prediction method has been developed for fully-developed 

flows in a circular pipe and between infinite parallel plates with random surface 

roughness.  The McClain (2002) method of characterization is used to successfully 

describe the randomly-rough surface for use within the discrete-element model. 

Initially, discrete-element model predictions for laminar, smooth wall flows inside 

circular pipes and between infinite parallel plates were compared with classical solutions.  

Predictions were identical or within 0.2% of the classical solutions.  Accepted 

experimental correlations for turbulent, internal, smooth wall flows were then compared 

with predictions.  The agreement was excellent.  Experimental friction factor data from 

four surfaces from Scaggs (1987) were also used for comparison.  The experimental 

results were from deterministically-roughened circular pipes.  Predictions from the model 

demonstrated excellent agreement with the experimental results. 

Friction factor and Nusselt number predictions were also presented for fully-

developed flows in circular pipes and between infinite parallel plates with randomly-

rough surfaces.  Comparisons were not provided due to the lack of experimental data in 

current literature.  However, velocity profiles for flows over randomly-rough, 

deterministically-rough and smooth surfaces were provided for comparison.  The 

expected results were realized.  The velocity profile over the randomly-rough surface 



www.manaraa.com

 

 

43

 

exhibited a greater slope as compared to the deterministically-rough and smooth surface 

profiles. 

Proper validation of this discrete-element prediction model for consideration of 

randomly-rough surfaces requires experimental data sets for comparison.  Future works 

should include acquisition of experimental friction factors and Nusselt numbers for fully-

developed flows inside circular pipes and between infinite parallel plates with randomly-

rough surfaces with the roughness geometry characterized by three-dimensional 

profilometer traces.  The randomly-rough surfaces must lend themselves to description by 

the McClain (2002) method of characterization. 
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APPENDIX A 
 

TEXT FILE FORMAT FOR EVALUATING RANDOMLY-ROUGH SURFACES 
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 As stated in Chapter 3, proper characterization of a randomly-rough surface is 

required for successful predictions from the discrete-element model.  Proper 

characterization requires correct formatting of the text file.  The text file conveys the 

physical characteristics of the randomly-rough surface. 

 Using the output file from a three-dimensional profilometer, the randomly-rough 

surface is divided into twenty-one equally spaced height levels.  The first level is 

assigned at the “melt height.”  The final level is taken at the pinnacle of the tallest 

roughness element.  The blockage fraction and the diameters and eccentricity factors of 

each roughness element are evaluated at each height level. 

 From the randomly-rough surface evaluation, a text file with the following format 

is created.  The number of elements present at the first height level is presented followed 

by the blockage fraction at that same height level.  After the blockage fraction, the 

diameter for each roughness element at the first height level is given.  Finally, the 

eccentricity for each roughness element at the first height level follows.  This 

arrangement is continued for each of the twenty-one levels.     

 Figure A.1 shows a layout of Scaggs (1987) Surface A-1.  Following Figure A.1, 

an example of a properly formatted text file for Scaggs Surface A-1 utilizing the McClain 

method of characterization is provided.  In Figure A-1, the area within the dashed box is 

the region under consideration in the example.  Comments are provide for better 

understanding. 
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Figure A.1  Description of Scaggs (1987) Surface A-1 Utilizing the McClain (2002)  
                   Method of Characterization 
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4   � Number of roughness elements at the first height level. 
0.196349375   Blockage fraction, β−1 , at the first height level. 
2.55    Diameter for roughness element #1 (mm) 
2.55    Diameter for roughness element 2 
2.55    Diameter for roughness element #3 
2.55    Diameter for roughness element #4 
1.0    Eccentricity factor for roughness element #1 
1.0    Eccentricity factor for roughness element #2 
1.0    Eccentricity factor for roughness element #3 
1.0    Eccentricity factor for roughness element #4 
4   � Number of roughness elements at the second height level. 
0.195858502   Blockage fraction, β−1 , at the second height level. 
2.546811   Diameter for roughness element #1 (mm) 
2.546811   Diameter for roughness element #2 
2.546811   Diameter for roughness element #3 
2.546811   Diameter for roughness element #4 
1.0    Eccentricity factor for roughness element #1 
1.0    Eccentricity factor for roughness element #2 
1.0    Eccentricity factor for roughness element #3 
1.0    Eccentricity factor for roughness element #4 
4 
0.194385881 
2.537218 
2.537218 
2.537218 
2.537218 
1.0 
1.0 
1.0 
1.0 
4 
0.191931514 
2.521149 
2.521149 
2.521149 
2.521149 
1.0 
1.0 
1.0 
1.0 
4 
0.1884954 
2.49848 
2.49848 
2.49848 
2.49848 
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1.0 
1.0 
1.0 
1.0 
4 
0.184077539 
2.469027 
2.469027 
2.469027 
2.469027 
1.0 
1.0 
1.0 
1.0 
4 
0.178677931 
2.432545 
2.432545 
2.432545 
2.432545 
1.0 
1.0 
1.0 
1.0 
4 
0.172296577 
2.388712 
2.388712 
2.388712 
2.388712 
1.0 
1.0 
1.0 
1.0 
4 
0.164933475 
2.337114 
2.337114 
2.337114 
2.337114 
1.0 
1.0 
1.0 
1.0 
4 
0.156588627 
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2.277223 
2.277223 
2.277223 
2.277223 
1.0 
1.0 
1.0 
1.0 
4 
0.147262031 
2.208365 
2.208365 
2.208365 
2.208365 
1.0 
1.0 
1.0 
1.0 
4 
0.136953689 
2.12967 
2.12967 
2.12967 
2.12967 
1.0 
1.0 
1.0 
1.0 
4 
0.1256636 
2.04 
2.04 
2.04 
2.04 
1.0 
1.0 
1.0 
1.0 
4 
0.113391764 
1.937832 
1.937832 
1.937832 
1.937832 
1.0 
1.0 
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1.0 
1.0 
4 
0.100138181 
1.821064 
1.821064 
1.821064 
1.821064 
1.0 
1.0 
1.0 
1.0 
4 
0.085902852 
1.68666 
1.68666 
1.68666 
1.68666 
1.0 
1.0 
1.0 
1.0 
4 
0.070685775 
1.53 
1.53 
1.53 
1.53 
1.0 
1.0 
1.0 
1.0 
4 
0.054486952 
1.343296 
1.343296 
1.343296 
1.343296 
1.0 
1.0 
1.0 
1.0 
4 
0.037306381 
1.111519 
1.111519 
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1.111519 
1.111519 
1.0 
1.0 
1.0 
1.0 
4 
0.019144064 
0.796237 
0.796237 
0.796237 
0.796237 
1.0 
1.0 
1.0 
1.0 
4   � Number of roughness elements at the final height level. 
0    Blockage fraction, β−1 , at the final height level. 
0    Diameter for roughness element #1 (mm) 
0    Diameter for roughness element #2 
0    Diameter for roughness element #3 
0    Diameter for roughness element #4 
1.0    Eccentricity factor for roughness element #1 
1.0    Eccentricity factor for roughness element #2 
1.0    Eccentricity factor for roughness element #3 
1.0    Eccentricity factor for roughness element #4 
 


